

 © 2017, IJCSE All Rights Reserved 266

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Parallel Implementation of Gradient Descent Algorithm for

Backpropagation Networks

K. Devkota

1*
, P. Bhattarai

2

1*

Department of Electronics and Computer Engineering, Institute of Engineering, Tribhuvan University, Kathmandu, Nepal
2
Department of Electronics and Computer Engineering, Institute of Engineering, Tribhuvan University, Kathmandu, Nepal

*Corresponding Author: kdkapildevkota@gmail.com, Tel.: +977-9843002224

Available online at: www.ijcseonline.org

Received: 28/Sep/2017, Revised: 07/Oct/2017, Accepted: 23/Oct/2017, Published: 30/Oct/2017

Abstract— The problem of computational efficiency in adaptive algorithms, which is current and pressing, can be solved

through their implementation in parallel frameworks, like CUDA, OpenCL, etc. The approach taken to parallelize any complex

operation requires its separation into several distinct and independent sub-operations. We employed the same procedure to

parallelize the BP (or Backpropagation) network algorithm. The function breakdown of the BP network involved breaking its

overall operation into Feed-forward and Back-Propagate sub-operations, which was further divided into smaller independent

execution groups. We applied parallel constructs on those independent execution groups and used the MNIST dataset to

compare the algorithm’s performance with respect to the sequential algorithm. Comparing their performances, we found that

the efficiency of the algorithm depended on the size of the BP network. In the large network with massive number of weight

connections, we saw a significant improvement in the convergence time. This makes our algorithm preferable in feedforward

networks having large number of hidden layers, neurons and weight connections.

Keywords—Backpropagation, Supervised Learning, CUDA, parallel

I. INTRODUCTION

As the volume and dimensionality of data increases, more

computational power is needed to extract relevant

information from it. There are primarily two ways to adapt

with the inescapable increment in data dimensions over time;

one is to make the algorithm more optimized and scalable to

larger datasets, other is to exploit the hardware innovations to

improve the algorithms performance. By parallelizing an

algorithm, we are striving for the latter goal. In parallel

computation of algorithms, many calculations or the

execution of processes are carried out simultaneously [1].

This can be exploited by BP networks, which are highly

flexible to parallel optimizations and can result in a

significant performance improvement.

The idea behind Backpropagation algorithm was to find a

way to train a multi-layered neural network such that it can

learn the appropriate internal representations to allow it to

learn any mapping of input to output [2].So, the

Backpropagation network, like other supervised learning

methods, requires additional training datasets to construct the

approximation of the system under consideration. So, the size

of datasets is imperative to the performance of the network,

as large size datasets may require bigger, multilevel BPNs to

converge. That is why the parallelization of the network is an

appealing option for performance enhancement through the

reduction of convergence time. This method however doesn’t

reduce the convergence rate of the BP network. The

convergence rate of the BP network is the inverse of the

average number of times, the network parameters have to be

updated for the error to be reduced to a tolerable amount. In

order to improve performance by increasing the convergence

rate, methods like self-adaptive learning rate technique [4],

heavy ball method, etc. have to be pursued.

Figure 1: BP artificial neural network framework [3]

The goal of parallel implementation of Backpropagation Net-

work can be accomplished through many available parallel

computational methods. These methods may require

additional hardware components to do the parallel

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 267

computations. Using dedicated hardware to do the machine

learning typically ends up in disaster because of cost,

obsolescence, and poor soft-ware. As real-time processing is

also an added requirement for many neural network

applications, fully parallel specially designed hardware

implementations, such as an FPGA-based realization of a

neural network may also sound appealing. But, it is

somewhat expensive and involves extra design overheads.

[5] So, GPU based parallelization are more prefer-able

because of their availability and ease of use. Graphic

Processing Units (GPUs), now available on every PC,

provides an attractive alternative which yield speedup in both

training and testing in Machine Learning algorithms. [6]

The simplest approach to train a BP network using gradient

information, in order to update network parameters is the

Gradient descent optimization method [7]. Gradient descent

optimization requires a sequential flow of weight and bias

values from one level to another, so it cannot be fully

parallelized across levels. But, by implementing

parallelization within levels, we can get a significant

performance improvement. In this paper, we try to explore a

generic understanding of BPNs and adjust it, so as to make it

more suitable for parallelization.

II. BACKPROPAGATION NETWORK

Backpropagation network can be visualized as a collection

of levels, each having a finite number of nodes and

sequenced in such a way that every adjacent levels have their

nodes fully connected to each other. Figure 1 shows the

diagram of a conventional BPN, with a detailing

representation of levels, nodes, weights and biases.

The complete definition of a BP network requires the

unique identification of all network parameters, including

weights, biases and neuronal outputs. The neurons (or nodes)

in the network can be uniquely addressed by the layer in

which the neuron is positioned and the position of the neuron

within that layer. For example, we can take the outermost

layer (i.e. output) as layer 0, and increment the address as we

progress towards the input layer. Similarly, the weights can

be uniquely addressed between the two nodes of the adjacent

layer by addressing the weight by the address of layer

(towards the output), the position of node in the outer layer

and the position of the node in the inner layer. This gives a

three dimensional identification of weights in the network.
The Backpropagation algorithm begins by assigning

random non-zero values to every weights and biases. The

feedforward part of the algorithm takes input values from the

input layer and forwards it to hidden layers. The result

propagates from layer to layer by computing the threshold of

the weighted addition of intermediate values form the

previous layers. Each layer may have a distinct threshold

function. The threshold functions can have an effect on the

speed and the convergence of the network. The continual

application of the weighted summation followed by threshold

computation of the known intermediate values form one

layer to obtain the unknown intermediate values of the other

layer, the output values can be obtained in the output layer.
Since feedforward network is a supervised learning network,

the input vector is accompanied by a target vector. To

optimize the value of weights so that the output vector

obtained from the output layer converges to the target

vectors, the error values are transferred inwards, towards the

input layer. As the error gradient propagates inwards, the

corresponding weights between layers get updated.

Suppose in an n-layered neural network, for p-input vectors,

the output should converge to q-output vectors T. During

feedforward computation, we can assume the output vector

as. Let the weights between the nodes in the network be rep-

resented as wijk, the i-index specifying the outward layer of

the weight connection (facing the output layer), j-index

representing the position of the outward node at the outward

layer, and k-index identifying the position of the inward node

at the inward layer. For the sake of convenience, the output

layer is indexed as 0th layer and the index increments by 1 as

we progress towards the input layer. Similarly, output of

every neurons can be represented as zij, where the i-index

identifies the layer of the neuron, and the j-index represents

the position inside the layer in which the neuron is present.

The same procedure can be followed to index the biases of

neurons in the network bij.
Each connection input to a neuron has an associated

weight. In a BPN network, a neuron has input connections

only with neurons of the previous layer. The neuronal output

is the weighted summation of outputs from the adjacent

previous layer, followed by a functional transformation. The

transforming function is often called a threshold function, as

it often limits the summed value between two extreme

values. So, the neuronal output can be computed as:

 ∑

 (1)

 () (2)

Where, aij is the weighted summation of outputs from

nodes from previous layers, and F is the threshold function.

We use gradient descent algorithm to converge the network

to the global minima. The global minima correspond to the

point of minimum error at the output. The error value (E) of

the network can thus be mathematically described as:

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 268

∑()

 (3)

 Where, ti is the target value at the ith neuron of the output

layer, and zij is the computed output value at the same

neuron. In gradient descent optimization, we compute the

gradient of the global error of the system with the parameter

to be optimized. If the system has a global error E, and the

optimization parameter is η, then the gradient of by η is

actually its partial derivative with respect to η. To update the

value of η, so that the error minimizes to a maxima, we

subtract to η, some part of its gradient. So the updated

parameter will be:

 (4)

The updated η becomes closer to the nearest minima,

regardless of whether the minima is local or global. This

variation of gradient descent optimization is called the

steepest descent method, as we can show that the steepest

direction of η is η [8]. The steepest descent method is

surprisingly a less effective method for global minima

search, and the implementation of heuristics like momentum

and delta-bar-delta procedures can significantly improves the

search performance. [9] But nevertheless, in a system with

single minima, this optimization algorithm always converges

to the global minima. So, implementing the gradient descent

method of optimization and the parameters to optimize are

weight connections between the nodes and the bias values of

the nodes of the entire network. Then, the updated weights

and biases become:

 ()

 (5)

 ()

 (6)

So, the prime focus of the weight and bias update process in

gradient descent algorithm for BPN network is the

computation of the partial derivative of the network error

with weights and biases at different layers. We can reduce

the complexity of the computation by introducing a new

parameter δij. This parameter is actually the partial derivative

of the global error with respect to aij.

 (7)

So,

 ()

 (8)

 ()

 (8)

 (10)

So the equation becomes:

 () (11)

 () (12)

The value of δij should be propagated backwards, from

output layer to the input layer. This backwards propagation

of δ values is why the network is called Backpropagation

Network.

 ∑

 (13)

 ∑

 (14)

From (10),

 () (15)

So,

 () ∑()

 (16)

At the output layer:

 () (17)

Because we already know the values of for the output units,

it follows that by recursively applying equation (16), we can

evaluate the δ for all the hidden units in a feed-forward

network, regardless of its topology.

The BPN training algorithm so constructed is:

1) Given input vector, forward propagate the neuronal output

from layer to layer, until the output becomes available at the

output layer.

2) Compute δ0i at the output neurons, and propagate the δ-

values backwards, until we reach the input layer.

3) Provided the training rate α, update wijk and bij as:

 ()

 ()
4) After all the weights and biases are updated, return to 1,

until the global error is inside the tolerance zone.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 269

III. PARALLEL IMPLEMENTATION

In Single Instruction Multiple Data (SIMD) parallelism,

which is a class of parallel architecture in Flynn’s taxonomy

[10], a common set of instructions acts on multiple data, and

modern day GPUs employ this form of parallel architecture.

The basic implementation of SIMD involves the

programming of an instruction set, which are then copied to

multiple SIMD processors for independent and simultaneous

execution. CUDA calls this programming construct, a kernel

function. So, we need to implement the BP network as a set

of so-called kernel functions, to be executed in the parallel

cores of a multi-core SIMD processor. We can conveniently

break down the complete BPN operations into three

independent parts;

Forward Propagation of Data, Reverse Propagation of Delta

Values, and Weight and Bias Update operations. Parallelism

in the first two operations can be realized within layers, but

the weight and bias update of the complete network can be

performed simultaneously, which results in a significant

improvement in computation time. Further descriptions of

parallel implementation of the abovementioned BPN

operations are described as:

A. Forward Propagation of Data

The forward propagation process computes the neuronal

outputs from layer to layer. So the process is parallel within a

layer, but we cannot simultaneously compute the neuronal

outputs of nodes belonging to separate layers, since the

output of a neuron from a layer depends on the outputs of the

nodes from the preceding layers. So the kernel size should be

the size of the layer under consideration. The kernel

algorithm for the forward propagation is shown below:

The pseudo code gets the a-value by performing the

weighted summation of z-values from the preceding layer,

and apply threshold function, represented by thres in the

pseudocode, to obtain the z-value.

B. Reverse Propagation of Delta Values

This process, similar to forward propagation process, is

parallel within a layer, since the delta values of a layer is

dependent on the delta values of the layer immediately

succeeding it. So, like forward propagation, the size of the

kernel should be equal to the size of the layer under

consideration. The kernel algorithm for reverse propagation

is:

Algorithm 2 Algorithm for computation of reverse values at node i for layer

n, for the network with l layers

In the pseudo code, the computation of the δ-value of a node

starts by performing the weighted summation of δ-values

from the succeeding nodes. The d_thres function represents

the derivative of the threshold function of the layer.

C. Weight and Bias Update

After we obtain the neuronal output and delta value at every

node of the network, we can begin the weight update process.

Since, weight update of a weight connection is independent

of the weight update at any other weight connection; the

number of the kernel threads is equal to the total number of

weight connections of the network. The weight update

algorithm is shown below:

Algorithm 1 Algorithm for computation of forward values at node i for

layer n, for the network with l layers

Algorithm 3 Algorithm for the update of weight connection between node i
of layer n and node j of layer n+1.

Algorithm 4 Algorithm for the update of bias values of node i of layer n.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 270

Similarly, for updating bias parameters, the algorithm is:

IV. PERFORMANCE ANALYSIS

The testing of our algorithm needed an effective measure of

comparison between the parallel and non-parallel codes and a

suitable hardware configuration to test the codes on. To

measure the effectiveness of the parallel code, we decided to

run the code in the worst-case scenario, which was to run the

tests in a rig with relatively powerful CPU and a middle to

low-tier GPU. A good performance measure at that scenario

would certainly imply an even better performance when

high-end, state-of-the-arc GPUs are available. So, we used a

computer with mobile NVIDIA GeForce 84OM GPU with

384 shader cores, clocked at 129 MHz as our GPU to run the

parallelized code, and an Intel Core i7-5600U CPU @

260GHz, 2594 MHz as our CPU to run the sequential version

of the code. There was also the issue of developing the

internal architecture of the network, which involves deciding

the number of nodes within each layer of the network. Since,

a large of independent parameters while building the network

may cause difficulty in performance analysis, we need to

reduce the number of independent network parameters to

smallest possible value. A reasonable way to represent a

network can be to use four parameters; the size of Input and

Output layers, the number of nodes in the network and the

total number of layers the network has. We can populate

hidden layers in the network by assigning each layer certain

amount of nodes that would maximize the total weight

connections in the network. By maximizing the number of

weight connections in a network, we are trying to increase

the number of computations during forward and reverse

propagation, as the number of weight connections often

correlates with the complexity of computation. This certainly

aids in our analysis, as we want to know the behaviour of the

GPU-code compared to the CPU-code when the size of

computation is large. To determine the node count of each

hidden layers for maximum possible number of weight

connections, the following strategy was used. Let the number

of layers in the network be l and the number of nodes at layer

i be
 , which is squared to ensure positiveness. Then,

 ∑

 (18)

If I is the required number of nodes at the output layer, and O

at the output layer,

 ∑

 (19)

The total number of network weights can be computed as:

 ∑

 (20)

Then, to maximize the weight-count function, given in (20)

while being constrained to (19), we create the Langrangian

function, given in (21).

 (∑

) (21)

As we partially differentiate with respect to L, we get:

 (22)

From (22), we get:

 (23)

If the number of layers (l) is a multiple of 4, λ becomes:

Figure 2. BP network configuration having maximum number of

Weight connections

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 271

 (24)

By replacing the value of λ from (24) on equations in (23),

we can create the BP network having largest number of

weight connections for a required number of nodes and

layer-size. We used this technique to create our BP network

for performance analysis, taking the total node-count and

layer-count as input. Figure (2) shows the internal

configuration of a BP network with maximum weight

distribution. Similarly, we used the MNIST dataset to

analyse the performance of the parallelized code. The

MNIST database (Modified National Institute of Standards

and Technology database) is a large database comprised of

handwritten digits which is commonly used for training and

testing various image processing systems. The MNIST

database of handwritten digits has a training set of 60,000

examples and a test set of 10,000 examples. It is a subset of a

larger set available from NIST. [11]. The original bi-level

images from NIST were size normalized to fit in a 20x20

pixel box, while preserving their aspect ratio. After applying

anti-aliasing techniques, the resulting MNIST images centres

around a 28x28 box. So, if we use a flattened MNIST image

vector without any interpolation as our input vector, the size

of input layer becomes 784. Since the MNIST dataset is

simply too large for our testing apparatus, tests should be

performed on a section of the dataset. This gives us a way to

measure the performance of our parallel code; we could

simply compare the time it takes to complete a series of BPN

operations on both sequential and parallel codes, with

increasing number of MNIST image samples. We can define

the BPN operation to be the total time a BP network takes to

perform a forward-reverse-update operation for 100

iterations. It can be conceded that it may require more than

100 iterations for such a large dataset to converge. But, we

are more interested in comparing the change in computation

speed than the change in convergence factor. The graphs in

figures. 3 and 4 show the relationship between the number of

MNIST image samples and the time it took for the network

to complete forward-backward-update operations, for both

sequential and parallel codes. When the number of samples

became exceedingly large and approaches the maximum

sample size, the computer took far too long time to converge

its output. To overcome this, we adjusted the number of BP

network’s iterations in accordance with the sample size and

extrapolated the result for 100 iterations.

We tried to see the differences between the CPU and GPU

computation time for node size, 2000 and 4000, and layer

count, 4 and 8 respectively. As we plotted the graphs for the

two specifications mentioned above, we got the expected

linear relationship between the MNIST sample size and the

iteration time. But what we found different was the

approximate slope of the plot for CPU and GPU codes. In

figure 4, where the node count was 4000 and number of

layers, 8, we found the CPU code to be slower than the GPU

code at every part of the curve. That was not the case when

the node count was 2000 and the number of layers, 4, as in

figure 3. This indicates that size plays an important factor in

deciding performance of the parallelized network. This may

be due to the fact that the host memory-device memory

interactions take a significant amount of time, and there is

not enough arithmetic intensity or number of numeric

computations performed per memory transaction. [12] But,

when the number of nodes increases, the parallel-

optimization begins to show its effects and the disparity in

computation time reduces. At larger node size however, we

see that the average CPU completion time is significantly

larger than the average GPU completion time. This kind of

performance speedup using graphics processors has been

noted in many other computational problems, like GPU-

based matrix multiplication using Strassen’s algorithm. [13]

V. CONCLUSION

The Parallelization of Backpropagation network presents

itself as an appealing option, if the number of nodes in the

Figure 3: Plot between the network’s average completion time and the

total number of MNIST samples for Number of Nodes = 4000, Number

of Layers = 8 and Number of Weights = 1999286

Figure 4: Plot between the network’s average completion time and
the total number of MNIST samples for Number of Nodes= 4000,

Number of Layers = 8 and Number of Weights = 1999286

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 272

network is exceedingly large. This way, we can perform

minimal change in the programming design, while ensuring

significant improvement in performance.

VI. REFERENCES

[1] G. S. Almasi, A. Gottlieb, “Highly Parallel Computing”,

Benjamin-Cummings Publishing Co., Inc., USA, 1989.

[2] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning

representations by back-propagating errors,” Nature, vol. 323,

no. 6088, pp. 533–536, 1986.

[3] C. Li, C. Yu, “Performance evaluation of public non-profit

hospitals using a BP artificial neural network: The case of

Hubei province in china,” International Journal of

Environmental Research and Public Health, Aug 2013.

[4] Y. Li, Y. Fu, H. Li, and S. W. Zhang, “The improved training

algorithm of back propagation neural network with self-

adaptive learning rate,” in 2009 International Conference on

Computational Intelligence and Natural Computing, pp. 73–76,

2009.

[5] J. Zhu, P. Sutton, “FPGA implementations of neural networks–a

survey of a decade of progress,” Field Programmable Logic and

Application, pp. 1062-1066, 2003.

[6] I. B. D. Steinkraus, P.Y. Simard, “Using GPUs for machine

learning algorithms,” Document Analysis and Recognition, pp.

1115-1120, 2009.

[7] C. M. Bishop, “Pattern Recognition and Machine Learning”,

Springer-Verlag New York, USA, 2006.

[8] Y. Yuan, “Step-sizes for the gradient method,” AMS/IP Studies

in Advanced Mathematics, 1999.

[9] R. A. Jacobs, “Increased rate of convergence through learning

rate adaptation,” Neural Networks, vol. 1, 1988.

[10] M. J. Flynn, “Some computer organizations and their

effectiveness,” IEEE Transactions on Computers, vol. C-21, no.

9, pp. 948–960, 1972.

[11] E. Kussul, T. Baidyk, “Improved method of handwritten digit

recognition tested on MNIST database,” Image and Vision

Computing, vol. 22, no. 12, pp. 971 – 981, 2004.

[12] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J.

C.Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96,

no. 5, pp. 879–899, May 2008.

[13] U. Ray, T.K. Hazra, U.K. Ray, "Matrix Multiplication using

Strassen’s Algorithm on CPU & GPU", International Journal of

Computer Sciences and Engineering, Vol.4, Issue.10, pp.98-

105, 2016.

Authors Profile

Mr. K. Devkota pursed Bachelor of Electronics
and Communications Engineering from the
Institute of Engineering (IOE), Nepal in the year
2016. He is currently working at the Department
of Electronics and Communications Engineering
(DOECE) of IOE. His main research work
focuses on Artificial Intelligence, High
Performance Computing and Machine Learning. He has almost a
year of teaching experience and a year of research experience.

Mr. P. Bhattarai pursed Bachelor of Computer
Engineering from the Institute of Engineering,
Nepal in the year 2016. He is currently working
as a freelance Java developer at his hometown,
Biratnagar. His main research work focuses on
the applicative aspects of Machine Learning,
primarily Computer Vision and Natural
Language Processing. He has 1 year of Research Experience.

