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Abstract— The problem of computational efficiency in adaptive algorithms, which is current and pressing, can be solved 

through their implementation in parallel frameworks, like CUDA, OpenCL, etc. The approach taken to parallelize any complex 

operation requires its separation into several distinct and independent sub-operations. We employed the same procedure to 

parallelize the BP (or Backpropagation) network algorithm. The function breakdown of the BP network involved breaking its 

overall operation into Feed-forward and Back-Propagate sub-operations, which was further divided into smaller independent 

execution groups. We applied parallel constructs on those independent execution groups and used the MNIST dataset to 

compare the algorithm’s performance with respect to the sequential algorithm. Comparing their performances, we found that 

the efficiency of the algorithm depended on the size of the BP network. In the large network with massive number of weight 

connections, we saw a significant improvement in the convergence time. This makes our algorithm preferable in feedforward 

networks having large number of hidden layers, neurons and weight connections.  
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I.  INTRODUCTION  

As the volume and dimensionality of data increases, more 

computational power is needed to extract relevant 

information from it. There are primarily two ways to adapt 

with the inescapable increment in data dimensions over time; 

one is to make the algorithm more optimized and scalable to 

larger datasets, other is to exploit the hardware innovations to 

improve the algorithms performance. By parallelizing an 

algorithm, we are striving for the latter goal. In parallel 

computation of algorithms, many calculations or the 

execution of processes are carried out simultaneously [1]. 

This can be exploited by BP networks, which are highly 

flexible to parallel optimizations and can result in a 

significant performance improvement. 

The idea behind Backpropagation algorithm was to find a 

way to train a multi-layered neural network such that it can 

learn the appropriate internal representations to allow it to 

learn any mapping of input to output [2].So, the 

Backpropagation network, like other supervised learning 

methods, requires additional training datasets to construct the 

approximation of the system under consideration. So, the size 

of datasets is imperative to the performance of the network, 

as large size datasets may require bigger, multilevel BPNs to 

converge. That is why the parallelization of the network is an 

appealing option for performance enhancement through the 

reduction of convergence time. This method however doesn’t 

reduce the convergence rate of the BP network. The 

convergence rate of the BP network is the inverse of the 

average number of times, the network parameters have to be 

updated for the error to be reduced to a tolerable amount. In 

order to improve performance by increasing the convergence 

rate, methods like self-adaptive learning rate technique [4], 

heavy ball method, etc. have to be pursued. 

 

 
Figure 1: BP artificial neural network framework [3] 

 

The goal of parallel implementation of Backpropagation Net-

work can be accomplished through many available parallel 

computational methods. These methods may require 

additional hardware components to do the parallel 
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computations. Using dedicated hardware to do the machine 

learning typically ends up in disaster because of cost, 

obsolescence, and poor soft-ware. As real-time processing is 

also an added requirement for many neural network 

applications, fully parallel specially designed hardware 

implementations, such as an FPGA-based realization of a 

neural network may also sound appealing. But, it is 

somewhat expensive and involves extra design overheads. 

[5] So, GPU based parallelization are more prefer-able 

because of their availability and ease of use. Graphic 

Processing Units (GPUs), now available on every PC, 

provides an attractive alternative which yield speedup in both 

training and testing in Machine Learning algorithms. [6] 

The simplest approach to train a BP network using gradient 

information, in order to update network parameters is the 

Gradient descent optimization method [7]. Gradient descent 

optimization requires a sequential flow of weight and bias 

values from one level to another, so it cannot be fully 

parallelized across levels. But, by implementing 

parallelization within levels, we can get a significant 

performance improvement. In this paper, we try to explore a 

generic understanding of BPNs and adjust it, so as to make it 

more suitable for parallelization. 

 

II. BACKPROPAGATION NETWORK 

 
Backpropagation network can be visualized as a collection 

of levels, each having a finite number of nodes and 

sequenced in such a way that every adjacent levels have their 

nodes fully connected to each other. Figure 1 shows the 

diagram of a conventional BPN, with a detailing 

representation of levels, nodes, weights and biases. 

The complete definition of a BP network requires the 

unique identification of all network parameters, including 

weights, biases and neuronal outputs. The neurons (or nodes) 

in the network can be uniquely addressed by the layer in 

which the neuron is positioned and the position of the neuron 

within that layer. For example, we can take the outermost 

layer (i.e. output) as layer 0, and increment the address as we 

progress towards the input layer. Similarly, the weights can 

be uniquely addressed between the two nodes of the adjacent 

layer by addressing the weight by the address of layer 

(towards the output), the position of node in the outer layer 

and the position of the node in the inner layer. This gives a 

three dimensional identification of weights in the network.  
The Backpropagation algorithm begins by assigning 

random non-zero values to every weights and biases. The 

feedforward part of the algorithm takes input values from the 

input layer and forwards it to hidden layers. The result 

propagates from layer to layer by computing the threshold of 

the weighted addition of intermediate values form the 

previous layers. Each layer may have a distinct threshold 

function. The threshold functions can have an effect on the 

speed and the convergence of the network. The continual 

application of the weighted summation followed by threshold 

computation of the known intermediate values form one 

layer to obtain the unknown intermediate values of the other 

layer, the output values can be obtained in the output layer.  
Since feedforward network is a supervised learning network, 

the input vector is accompanied by a target vector. To 

optimize the value of weights so that the output vector 

obtained from the output layer converges to the target 

vectors, the error values are transferred inwards, towards the 

input layer. As the error gradient propagates inwards, the 

corresponding weights between layers get updated. 

  
Suppose in an n-layered neural network, for p-input vectors, 

the output should converge to q-output vectors T. During 

feedforward computation, we can assume the output vector 

as. Let the weights between the nodes in the network be rep-

resented as wijk, the i-index specifying the outward layer of 

the weight connection (facing the output layer), j-index 

representing the position of the outward node at the outward 

layer, and k-index identifying the position of the inward node 

at the inward layer. For the sake of convenience, the output 

layer is indexed as 0th layer and the index increments by 1 as 

we progress towards the input layer. Similarly, output of 

every neurons can be represented as zij, where the i-index 

identifies the layer of the neuron, and the j-index represents 

the position inside the layer in which the neuron is present. 

The same procedure can be followed to index the biases of 

neurons in the network bij.  
Each connection input to a neuron has an associated 

weight. In a BPN network, a neuron has input connections 

only with neurons of the previous layer. The neuronal output 

is the weighted summation of outputs from the adjacent 

previous layer, followed by a functional transformation. The 

transforming function is often called a threshold function, as 

it often limits the summed value between two extreme 

values. So, the neuronal output can be computed as: 

    ∑    
 

           (1) 

     (   ) (2) 

  

Where, aij is the weighted summation of outputs from 

nodes from previous layers, and F is the threshold function. 

We use gradient descent algorithm to converge the network 

to the global minima. The global minima correspond to the 

point of minimum error at the output. The error value (E) of 

the network can thus be mathematically described as: 
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     Where, ti is the target value at the ith neuron of the output 

layer, and zij is the computed output value at the same 

neuron. In gradient descent optimization, we compute the 

gradient of the global error of the system with the parameter 

to be optimized. If the system has a global error E, and the 

optimization parameter is η, then the gradient of  by η is 

actually its partial derivative with respect to η. To update the 

value of η, so that the error minimizes to a maxima, we 

subtract to η, some part of its gradient. So the updated 

parameter will be: 

 

           
  

  
 (4) 

 

The updated η becomes closer to the nearest minima, 

regardless of whether the minima is local or global. This 

variation of gradient descent optimization is called the 

steepest descent method, as we can show that the steepest 

direction of η is  η [8]. The steepest descent method is 

surprisingly a less effective method for global minima 

search, and the implementation of heuristics like momentum 

and delta-bar-delta procedures can significantly improves the 

search performance. [9] But nevertheless, in a system with 

single minima, this optimization algorithm always converges 

to the global minima. So, implementing the gradient descent 

method of optimization and the parameters to optimize are 

weight connections between the nodes and the bias values of 

the nodes of the entire network. Then, the updated weights 

and biases become: 

    (       )        
  

     
 (5) 

   (       )       
  

     
 (6) 

  

So, the prime focus of the weight and bias update process in 

gradient descent algorithm for BPN network is the 

computation of the partial derivative of the network error 

with weights and biases at different layers. We can reduce 

the complexity of the computation by introducing a new 

parameter δij. This parameter is actually the partial derivative 

of the global error with respect to aij. 

    
  

    
 (7) 

 

So, 

    (       )             
    

     
 (8) 
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So the equation becomes: 

    (       )                    (11) 

   (       )            (12) 

The value of δij should be propagated backwards, from 

output layer to the input layer. This backwards propagation 

of δ values is why the network is called Backpropagation 

Network. 
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From (10), 
       
    

          (   ) (15) 

 

So, 

     (   ) ∑(             )

 

 (16) 

   

At the output layer: 

       (      ) (17) 

   

Because we already know the values of  for the output units, 

it follows that by recursively applying equation (16), we can 

evaluate the δ for all the hidden units in a feed-forward 

network, regardless of its topology. 

The BPN training algorithm so constructed is: 

1) Given input vector, forward propagate the neuronal output 

from layer to layer, until the output becomes available at the 

output layer. 

2) Compute δ0i at the output neurons, and propagate the δ-

values backwards, until we reach the input layer. 

3) Provided the training rate α, update wijk and bij as: 

    (       )                    

   (       )            
4) After all the weights and biases are updated, return to 1, 

until the global error is inside the tolerance zone. 
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III. PARALLEL IMPLEMENTATION 

In Single Instruction Multiple Data (SIMD) parallelism, 

which is a class of parallel architecture in Flynn’s taxonomy 

[10], a common set of instructions acts on multiple data, and 

modern day GPUs employ this form of parallel architecture. 

The basic implementation of SIMD involves the 

programming of an instruction set, which are then copied to 

multiple SIMD processors for independent and simultaneous 

execution. CUDA calls this programming construct, a kernel 

function. So, we need to implement the BP network as a set 

of so-called kernel functions, to be executed in the parallel 

cores of a multi-core SIMD processor. We can conveniently 

break down the complete BPN operations into three 

independent parts; 

Forward Propagation of Data, Reverse Propagation of Delta 

Values, and Weight and Bias Update operations. Parallelism 

in the first two operations can be realized within layers, but 

the weight and bias update of the complete network can be 

performed simultaneously, which results in a significant 

improvement in computation time. Further descriptions of 

parallel implementation of the abovementioned BPN 

operations are described as: 

 

A. Forward Propagation of Data 

The forward propagation process computes the neuronal 

outputs from layer to layer. So the process is parallel within a 

layer, but we cannot simultaneously compute the neuronal 

outputs of nodes belonging to separate layers, since the 

output of a neuron from a layer depends on the outputs of the 

nodes from the preceding layers. So the kernel size should be 

the size of the layer under consideration. The kernel 

algorithm for the forward propagation is shown below: 

The pseudo code gets the a-value by performing the 

weighted summation of z-values from the preceding layer, 

and apply threshold function, represented by thres in the 

pseudocode, to obtain the z-value. 

 

B. Reverse Propagation of Delta Values 

This process, similar to forward propagation process, is 

parallel within a layer, since the delta values of a layer is 

dependent on the delta values of the layer immediately 

succeeding it. So, like forward propagation, the size of the 

kernel should be equal to the size of the layer under 

consideration. The kernel algorithm for reverse propagation 

is: 

 

Algorithm 2 Algorithm for computation of reverse values at node i for layer 

n, for the network with l layers 

In the pseudo code, the computation of the δ-value of a node 

starts by performing the weighted summation of δ-values 

from the succeeding nodes. The d_thres function represents 

the derivative of the threshold function of the layer. 

C. Weight and Bias Update 

 

After we obtain the neuronal output and delta value at every 

node of the network, we can begin the weight update process. 

Since, weight update of a weight connection is independent 

of the weight update at any other weight connection; the 

number of the kernel threads is equal to the total number of 

weight connections of the network. The weight update 

algorithm is shown below:  

Algorithm 1 Algorithm for computation of forward values at node i for 

layer n, for the network with l layers 

Algorithm 3 Algorithm for the update of weight connection between node i 
of layer n and node j of layer n+1. 

Algorithm 4 Algorithm for the update of bias values of node i of layer n. 
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Similarly, for updating bias parameters, the algorithm is: 

IV.      PERFORMANCE ANALYSIS 

 

The testing of our algorithm needed an effective measure of 

comparison between the parallel and non-parallel codes and a 

suitable hardware configuration to test the codes on. To 

measure the effectiveness of the parallel code, we decided to 

run the code in the worst-case scenario, which was to run the 

tests in a rig with relatively powerful CPU and a middle to 

low-tier GPU. A good performance measure at that scenario 

would certainly imply an even better performance when 

high-end, state-of-the-arc GPUs are available. So, we used a 

computer with mobile NVIDIA GeForce 84OM GPU with 

384 shader cores, clocked at 129 MHz as our GPU to run the 

parallelized code, and an Intel Core i7-5600U CPU @ 

260GHz, 2594 MHz as our CPU to run the sequential version 

of the code. There was also the issue of developing the 

internal architecture of the network, which involves deciding 

the number of nodes within each layer of the network. Since, 

a large of independent parameters while building the network 

may cause difficulty in performance analysis, we need to 

reduce the number of independent network parameters to 

smallest possible value. A reasonable way to represent a 

network can be to use four parameters; the size of Input and 

Output layers, the number of nodes in the network and the 

total number of layers the network has. We can populate 

hidden layers in the network by assigning each layer certain 

amount of nodes that would maximize the total weight 

connections in the network. By maximizing the number of 

weight connections in a network, we are trying to increase 

the number of computations during forward and reverse 

propagation, as the number of weight connections often 

correlates with the complexity of computation. This certainly 

aids in our analysis, as we want to know the behaviour of the 

GPU-code compared to the CPU-code when the size of 

computation is large. To determine the node count of each 

hidden layers for maximum possible number of weight 

connections, the following strategy was used. Let the number 

of layers in the network be l and the number of nodes at layer 

i be  
 , which is squared to ensure positiveness. Then, 

  ∑  
 

 

   

 (18) 

 

 

If I is the required number of nodes at the output layer, and O 

at the output layer, 

  ∑  
 

   

   

     (19) 

 

The total number of network weights can be computed as: 

  ∑  
      

 

   

   

 (20) 

 

Then, to maximize the weight-count function, given in (20) 

while being constrained to (19), we create the Langrangian 

function, given in (21).  

     (∑  
 

   

   

      ) (21) 

 

 

As we partially differentiate with respect to L, we get: 

 

 

 

  
     

  
    

     

       

      (22) 

       

    
    

     

  
     

 

From (22), we get: 

 

 

  
       

  
     

       

      (23) 

       

    
     

    
       

 

 

If the number of layers (l) is a multiple of 4, λ becomes: 

 

Figure 2. BP network configuration having maximum number of 

Weight connections 
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 (24) 

By replacing the value of λ from (24) on equations in (23), 

we can create the BP network having largest number of 

weight connections for a required number of nodes and 

layer-size. We used this technique to create our BP network 

for performance analysis, taking the total node-count and 

layer-count as input. Figure (2) shows the internal 

configuration of a BP network with maximum weight 

distribution. Similarly, we used the MNIST dataset to 

analyse the performance of the parallelized code. The 

MNIST database (Modified National Institute of Standards 

and Technology database) is a large database comprised of 

handwritten digits which is commonly used for training and 

testing various image processing systems. The MNIST 

database of handwritten digits has a training set of 60,000 

examples and a test set of 10,000 examples. It is a subset of a 

larger set available from NIST. [11]. The original bi-level 

images from NIST were size normalized to fit in a 20x20 

pixel box, while preserving their aspect ratio. After applying 

anti-aliasing techniques, the resulting MNIST images centres 

around a 28x28 box. So, if we use a flattened MNIST image 

vector without any interpolation as our input vector, the size 

of input layer becomes 784. Since the MNIST dataset is 

simply too large for our testing apparatus, tests should be 

performed on a section of the dataset. This gives us a way to 

measure the performance of our parallel code; we could 

simply compare the time it takes to complete a series of BPN 

operations on both sequential and parallel codes, with 

increasing number of MNIST image samples. We can define 

the BPN operation to be the total time a BP network takes to 

perform a forward-reverse-update operation for 100 

iterations. It can be conceded that it may require more than 

100 iterations for such a large dataset to converge. But, we 

are more interested in comparing the change in computation 

speed than the change in convergence factor. The graphs in 

figures. 3 and 4 show the relationship between the number of 

MNIST image samples and the time it took for the network 

to complete forward-backward-update operations, for both 

sequential and parallel codes. When the number of samples 

became exceedingly large and approaches the maximum 

sample size, the computer took far too long time to converge 

its output. To overcome this, we adjusted the number of BP 

network’s iterations in accordance with the sample size and 

extrapolated the result for 100 iterations. 

We tried to see the differences between the CPU and GPU 

computation time for node size, 2000 and 4000, and layer 

count, 4 and 8 respectively. As we plotted the graphs for the 

two specifications mentioned above, we got the expected 

linear relationship between the MNIST sample size and the 

iteration time. But what we found different was the 

approximate slope of the plot for CPU and GPU codes. In 

figure 4, where the node count was 4000 and number of 

layers, 8, we found the CPU code to be slower than the GPU 

code at every part of the curve. That was not the case when 

the node count was 2000 and the number of layers, 4, as in 

figure 3. This indicates that size plays an important factor in 

deciding performance of the parallelized network. This may 

be due to the fact that the host memory-device memory 

interactions take a significant amount of time, and there is 

not enough arithmetic intensity or number of numeric 

computations performed per memory transaction. [12] But, 

when the number of nodes increases, the parallel-

optimization begins to show its effects and the disparity in 

computation time reduces. At larger node size however, we 

see that the average CPU completion time is significantly 

larger than the average GPU completion time. This kind of 

performance speedup using graphics processors has been 

noted in many other computational problems, like GPU-

based matrix multiplication using Strassen’s algorithm. [13] 

V.  CONCLUSION 

The Parallelization of Backpropagation network presents 

itself as an appealing option, if the number of nodes in the 

 
Figure 3: Plot between the network’s average completion time and the 

total number of MNIST samples for Number of Nodes = 4000, Number 

of Layers = 8 and Number of Weights = 1999286 

Figure 4: Plot between the network’s average completion time and 
the total number of MNIST samples for Number of Nodes= 4000, 

Number of Layers = 8 and Number of Weights = 1999286 
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network is exceedingly large. This way, we can perform 

minimal change in the programming design, while ensuring 

significant improvement in performance. 
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